当前位置:网站首页 > 科技动态 > 正文

facenet环境配置

 


安装tensorflow:


安装anaconda:linux:sh An...sh  设置环境变量:export PATH=/anconda3/bin:$PATH


开始菜单->Anaconda3—>Anaconda Prompt
conda list
conda config --add channels mirrors.tuna.tsinghua.edu.cn/anaconda/pk…
conda config --set show_channel_urls yes
conda create -n tensorflow python=3.6
pip install --upgrade --ignore-installed tensorflow


如果安装失败:
wget files.pythonhosted.org/packages/68…




activate tensorflow
linux: source activate tensorflow


所需依赖:
scipy
scikit-learn
opencv-python
h5py
matplotlib
pillow
requests
psutil


安装opencv-python:
pip install opencv-python


linux: yum -y install git
安装facenet:
git clone github.com/davidsandbe…


设置环境变量:
PYTHONPATH = C:\Users\hbw\facenet\src


训练模型


python compare.py - 1.jpg 2.jpg


以下为linux报错:


linux: ModuleNotFoundError: No module named 'cv2': pip install bleach 解决:  pip install tensorboard
ImportError: libSM.so.6: cannot open shared object file: No such file or directory 解决: yum install -y python-qt4
ubuntu: sudo apt install -y python-qt4




安装显卡:


sudo nautilus


sudo apt-get update


vi /etc/modprobe.d/blacklist.conf 加:


blacklist vga16fb 
blacklist nouveau 
blacklist rivafb 
blacklist rivatv 
blacklist nvidiafb


sudo update-initramfs -u


lsmod | grep nouveau


ubuntu-drivers devices


sudo apt-get install nvidia-384


sudo reboot


sudo nvidia-smi


后台运行:nohup python compare.py &


、、在终端执行 Python 程序时可以使用下面的命令:


、、 CUDA_VISIBLE_DEVICES=6(或CUDA_VISIBLE_DEVICES=6,7)command


、、 nvidia-smi -L


、、CUDA_VISIBLE_DEVICES=1 python your_file.py


、、这样在跑你的网络之前,告诉程序只能看到1号GPU,其他的GPU它不可见


、、可用的形式如下:


、、CUDA_VISIBLE_DEVICES=1          # Only device 1 will be seen 
、、CUDA_VISIBLE_DEVICES=0,1       # Devices 0 and 1 will be visible 
、、CUDA_VISIBLE_DEVICES=”0,1”     # Same as above, quotation marks are optional 
、、CUDA_VISIBLE_DEVICES=0,2,3     # Devices 0, 2, 3 will be visible; device 1 is masked 
、、CUDA_VISIBLE_DEVICES=”“           # No GPU will be visible


使用GPU:
1. 安装cuda
gcc/g++ 降级
sudo apt-get install gcc-4.8 
sudo apt-get install g++-4.8
cd /usr/bin
ls -l gcc*
sudo mv gcc gcc.bak
sudo ln -s gcc-4.8 gcc
ls -l g++*
sudo mv g++ g++.bak 
sudo ln -s g++-4.8 g++
gcc -v g++ -v
2. 下载cuda9.0并安装:
cuda9.0地址:developer.nvidia.com/cuda-90-dow…
sudo sh cuda_9.0.176_384.81_linux.run --override   // 安装时不能选择显卡驱动
sudo sh cuda_9.0.176.1_linux.run
sudo sh cuda_9.0.176.2_linux.run
sudo sh cuda_9.0.176.3_linux.run

export PATH=/usr/local/cuda-9.0/bin${PATH:+:$PATH}} 
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}





pip uninstall tensorflow 


pip install tensorflow-gpu


设置静态ip:


1、vi /etc/network/interfaces


添加内容:


auto enos31f6
iface enos31f6 inet static
address 192.168.8.100    
netmask 255.255.255.0
gateway 192.168.8.2
dns-nameserver 8.8.8.8


sudo /etc/init.d/networking restart




启动网卡:


sudo apt install ifupdown     
sudo apt install ifupdown2    
sudo apt install netscript-2.4


ubuntu 18.04 设置静态ip:
sudo nano /etc/netplan/50-cloud-init.yaml:
network:
ethernets:
enp0s31f6:
addresses: [192.168.2.41/24]
dhcp4: false
optional: true
gateway4: 192.168.2.1
nameservers:
addresses: [8.8.8.8]
version: 2

生效:sudo netplan apply


安装cudnn:


cp cudnn-9.0-linux-x64-v7.1.solitairetheme8 cudnn-9.0-linux-x64-v7.1.tgz
tar -xzvf cudnn-9.0-linux-x64-v7.1.tgz
进入解压后的文件:
sudo mv cudnn.h /usr/local/cuda-9.0/include/
sudo mv libcudnn.so libcudnn.so.7 libcudnn.so.7.1.4 libcudnn_static.a /usr/local/cuda-9.0/lib64/
sudo mv NVIDIA_SLA_cuDNN_Support.txt /usr/local/cuda-9.0/



ImportError: libcudnn.so.7: cannot open shared object file: No such file or directory
这个报错要么是环境变量配置问题,要么是CUDNN连接建立问题。


1.环境变量


在~/.bashrc 的最后添加


export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}


export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}


export CUDA_HOME=/usr/local/cuda-9.0


2.CUDNN连接建立


cd /usr/local/cuda-9.0/lib64


sudo rm -rf libcudnn.so libcudnn.so.7  #删除原有版本号,版本号在cudnn/lib64中查询


sudo ln -s libcudnn.so.7.1.4 libcudnn.so.7 #生成软连接,注意自己下载的版本号


sudo ln -s libcudnn.so.7 libcudnn.so 


sudo ldconfig #立即生效



运行 CUDA_VISIBLE_DEVICES=1 python compare.py 


安装maxnet minpy 使 numpy 能够使用 gpu:


pip install maxnet
pip install minpy


导包时将numpy改为minpy.numpy




安装图形界面;
apt-get update


sudo apt-get install xinit


sudo apt-get install gdm


sudo apt-get install kubuntu-desktop


安装mxnet:
sudo apt-get update
sudo apt-get install -y build-essential git libatlas-base-dev libopencv-dev
构建MXNet:
git clone --recursive github.com/dmlc/mxnet
cd mxnet;
cp make/config.mk .
make -j4
cd 到mxnet的 python目录下执行sudo python setup.py install


pip install pycuda


安装numba:
sudo apt-get install llvm
sudo -H pip install numba


实时查看gpu使用情况:
watch -n 1 nvidia-smi




图片格式化:
python ~/facenet/src/align/align_dataset_mtcnn.py lfw lfw_160 --image_size 160 --margin 32 --random_order --gpu_memory_fraction=0.7


python align/align_dataset_mtcnn.py im img --image_size 160 --margin 32 --random_order --gpu_memory_fraction=0.7


python validate_on_lfw.py ~/facenet/data/lfw_160 -

 

  • 上一篇: mlo教程
  • 下一篇: patch loader mod
  • 版权声明


    相关文章:

  • mlo教程2025-04-05 07:00:59
  • win11环境变量在哪打开2025-04-05 07:00:59
  • python opencv角点检测2025-04-05 07:00:59
  • centos7编译安装apache2025-04-05 07:00:59
  • ftp服务器搭建方法2025-04-05 07:00:59
  • patch loader mod2025-04-05 07:00:59
  • java中常量的定义2025-04-05 07:00:59
  • 成功包括2025-04-05 07:00:59
  • git clone timed out2025-04-05 07:00:59
  • 小程序图片加载速度慢2025-04-05 07:00:59