以下是使用Python和TensorFlow实现
DBN 深度 置信 网络的代码:
```python
import tensorflow as tf
import numpy as np
class
DBN(object):
def __init__(self, n_layers, n_nodes, learning_rate=0.01, batch_size=100, n_epochs=10):
self.n_layers = n_layers
self.n_nodes = n_nodes
self.learning_rate = learning_rate
self.batch_size = batch_size
self.n_epochs = n_epochs
self.weights = []
self.biases = []
self.build_model()
def build_model(self):
self.X = tf.placeholder(tf.float32, shape=[None, self.n_nodes[0]])
self.y = tf.placeholder(tf.float32, shape=[None, self.n_nodes[-1]])
# 构建每一层的权重和偏置
for i in range(self.n_layers-1):
w = tf.Variable(tf.random_normal([self.n_nodes[i], self.n_nodes[i+1]], stddev=0.1), name='w'+str(i))
b = tf.Variable(tf.zeros([self.n_nodes[i+1]]), name='b'+str(i))
self.weights.append(w)
self.biases.append(b)
# 构建前向传播过程
layers = [self.X]
for i in range(self.n_layers-1):
layer = tf.nn.sigmoid(tf.add(tf.matmul(layers[-1], self.weights[i]), self.biases[i]))
layers.append(layer)
self.y_pred = layers[-1]
# 构建反向传播过程
self.loss = tf.reduce_mean(tf.square(self.y - self.y_pred))
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.loss)
self.init_op = tf.global_variables_initializer()
def fit(self, X_train, y_train):
n_samples = X_train.shape[0]
with tf.Session() as sess:
sess.run(self.init_op)
for epoch in range(self.n_epochs):
total_loss = 0
for i in range(n_samples // self.batch_size):
batch_X = X_train[i*self.batch_size: (i+1)*self.batch_size]
batch_y = y_train[i*self.batch_size: (i+1)*self.batch_size]
_, loss = sess.run([self.optimizer, self.loss], feed_dict={self.X: batch_X, self.y: batch_y})
total_loss += loss
avg_loss = total_loss / (n_samples // self.batch_size)
print("Epoch:", epoch+1, "Loss:", avg_loss)
self.weights = sess.run(self.weights)
self.biases = sess.run(self.biases)
def predict(self, X_test):
with tf.Session() as sess:
sess.run(self.init_op)
for i in range(self.n_layers-1):
sess.run([self.weights[i].assign(self.weights[i]), self.biases[i].assign(self.biases[i])])
y_pred = sess.run(self.y_pred, feed_dict={self.X: X_test})
return y_pred
使用方法:```pythonimport numpy as npfrom sklearn.datasets import load_bostonfrom sklearn.preprocessing import StandardScalerfrom sklearn.model_selection import train_test_split# 加载数据并进行预处理data = load_boston()X = data.datay = data.target.reshape(-1, 1)X = StandardScaler().fit_transform(X)y = StandardScaler().fit_transform(y)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)# 构建DBN模型dbn=DBN(n_layers=3, n_nodes=[13, 10, 1], learning_rate=0.01, batch_size=100, n_epochs=50)dbn.fit(X_train, y_train)# 预测y_pred =dbn.predict(X_test)
其中,`data`是加载的数据集,`X`是特征,`y`是目标变量。首先进行标准化处理,然后将数据划分为训练集和测试集。接着构建
DBN模型,其中`n_layers`是层数,`n_nodes`是每一层的节点数,`learning_rate`是学习率,`batch_size`是批次大小,`n_epochs`是训练轮数。调用`fit`方法进行训练,调用`predict`方法进行预测。
版权声明:
本文来源网络,所有图片文章版权属于原作者,如有侵权,联系删除。
本文网址:https://www.mushiming.com/mjsbk/5106.html