当前位置:网站首页 > 技术博客 > 正文

d3qn算法

下面是使用

DQN

训练UNet进行建筑物变化检测的

PyTorch 代码

。请注意,这只是一个示例,你需要根据你的数据集和模型进行适当的修改。

首先,我们需要导入必要的库:

 import torch import torch.nn as nn import torch.optim as optim import numpy as np import random from collections import deque 

接下来,我们定义

DQN

模型。在这个示例中,我们将使用一个简单的全连接神经网络作为

DQN

,它将接受UNet的输出并输出一个Q值。

 class DQN (nn.Module): def __init__(self, state_size, action_size): super( DQN , self).__init__() self.fc1 = nn.Linear(state_size, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_size)  def forward(self, x): x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x 

现在我们定义一个ReplayBuffer类,用于存储先前的状态、动作、奖励和下一个状态,以便我们可以使用

DQN

从中随机选择一些样本进行训练。

 class ReplayBuffer(): def __init__(self, buffer_size): self.buffer_size = buffer_size self.buffer = deque(maxlen=buffer_size)  def add(self, state, action, reward, next_state, done): experience = (state, action, reward, next_state, done) self.buffer.append(experience)  def sample(self, batch_size): if len(self.buffer) < batch_size: batch = random.sample(self.buffer, len(self.buffer)) else: batch = random.sample(self.buffer, batch_size) states, actions, rewards, next_states, dones = zip(*batch) return states, actions, rewards, next_states, dones 

现在我们定义一个Agent类,它将使用

DQN

模型和ReplayBuffer类来实现

DQN 算法

 class Agent(): def __init__(self, state_size, action_size, buffer_size, batch_size, gamma, epsilon, epsilon_decay): self.state_size = state_size self.action_size = action_size self.buffer_size = buffer_size self.batch_size = batch_size self.gamma = gamma self.epsilon = epsilon self.epsilon_decay = epsilon_decay self.epsilon_min = 0.01 self.tau = 0.1  self.model = DQN (state_size, action_size) self.target_model = DQN (state_size, action_size) self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)  self.memory = ReplayBuffer(buffer_size)  def select_action(self, state): if random.uniform(0, 1) < self.epsilon: return random.randrange(self.action_size) else: state = torch.from_numpy(state).float().unsqueeze(0) q_values = self.model(state) return np.argmax(q_values.detach().numpy())  def train(self): if len(self.memory.buffer) < self.batch_size: return  states, actions, rewards, next_states, dones = self.memory.sample(self.batch_size)  states = torch.from_numpy(np.array(states)).float() actions = torch.from_numpy(np.array(actions)).long() rewards = torch.from_numpy(np.array(rewards)).float() next_states = torch.from_numpy(np.array(next_states)).float() dones = torch.from_numpy(np.array(dones)).float()  q_values = self.model(states).gather(1, actions.unsqueeze(1)).squeeze(1) next_q_values = self.target_model(next_states).max(1)[0].detach() expected_q_values = rewards + self.gamma * next_q_values * (1 - dones)  loss = nn.functional.smooth_l1_loss(q_values, expected_q_values)  self.optimizer.zero_grad() loss.backward() self.optimizer.step()  for param, target_param in zip(self.model.parameters(), self.target_model.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)  if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay 

最后,我们定义一个主函数,它将训练我们的

DQN

模型并输出结果。

 def main(): state_size = 64 action_size = 2 buffer_size =  batch_size = 32 gamma = 0.99 epsilon = 1.0 epsilon_decay = 0.995 num_episodes = 1000  agent = Agent(state_size, action_size, buffer_size, batch_size, gamma, epsilon, epsilon_decay)  # 训练循环 for episode in range(num_episodes): # 初始化环境 state = env.reset()  # 记录总奖励 total_reward = 0  # 训练循环 while True: # 选择动作 action = agent.select_action(state)  # 执行动作并观察结果 next_state, reward, done, _ = env.step(action)  # 将经验添加到回放缓冲区 agent.memory.add(state, action, reward, next_state, done)  # 训练 DQN agent.train()  # 更新状态 state = next_state  # 更新总奖励 total_reward += reward  # 如果游戏结束了,退出循环 if done: break  # 输出训练结果 print("Episode: {}/{}, Total Reward: {}, Epsilon: {:.2f}".format(episode+1, num_episodes, total_reward, agent.epsilon))  if __name__ == "__main__": main() 

请注意,上面的

代码

仅用作示例。你需要根据你的数据集和模型进行适当的修改。

版权声明


相关文章:

  • 大数据用户画像的核心技术2025-04-15 13:01:04
  • getline(infile,line)2025-04-15 13:01:04
  • C语言计算机二级2025-04-15 13:01:04
  • java编写软件2025-04-15 13:01:04
  • 预测模型的作用2025-04-15 13:01:04
  • 归并排序算法分析2025-04-15 13:01:04
  • mysql触发器怎么用2025-04-15 13:01:04
  • map键值对可以为null2025-04-15 13:01:04
  • 线程间通信机制2025-04-15 13:01:04
  • oracle 视图 rowid2025-04-15 13:01:04