下面是使用
DQN训练UNet进行建筑物变化检测的
PyTorch 代码。请注意,这只是一个示例,你需要根据你的数据集和模型进行适当的修改。
首先,我们需要导入必要的库:
import torchimport torch.nn as nnimport torch.optim as optimimport numpy as npimport randomfrom collections import deque
接下来,我们定义
DQN模型。在这个示例中,我们将使用一个简单的全连接神经网络作为
DQN,它将接受UNet的输出并输出一个Q值。
classDQN(nn.Module):def __init__(self, state_size, action_size):super(DQN, self).__init__()self.fc1 = nn.Linear(state_size, 64)self.fc2 = nn.Linear(64, 64)self.fc3 = nn.Linear(64, action_size)def forward(self, x):x = nn.functional.relu(self.fc1(x))x = nn.functional.relu(self.fc2(x))x = self.fc3(x)return x
现在我们定义一个ReplayBuffer类,用于存储先前的状态、动作、奖励和下一个状态,以便我们可以使用
DQN从中随机选择一些样本进行训练。
class ReplayBuffer():def __init__(self, buffer_size):self.buffer_size = buffer_sizeself.buffer = deque(maxlen=buffer_size)def add(self, state, action, reward, next_state, done):experience = (state, action, reward, next_state, done)self.buffer.append(experience)def sample(self, batch_size):if len(self.buffer) < batch_size:batch = random.sample(self.buffer, len(self.buffer))else:batch = random.sample(self.buffer, batch_size)states, actions, rewards, next_states, dones = zip(*batch)return states, actions, rewards, next_states, dones
现在我们定义一个Agent类,它将使用
DQN模型和ReplayBuffer类来实现
DQN 算法。
class Agent():def __init__(self, state_size, action_size, buffer_size, batch_size, gamma, epsilon, epsilon_decay):self.state_size = state_sizeself.action_size = action_sizeself.buffer_size = buffer_sizeself.batch_size = batch_sizeself.gamma = gammaself.epsilon = epsilonself.epsilon_decay = epsilon_decayself.epsilon_min = 0.01self.tau = 0.1self.model =DQN(state_size, action_size)self.target_model =DQN(state_size, action_size)self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)self.memory = ReplayBuffer(buffer_size)def select_action(self, state):if random.uniform(0, 1) < self.epsilon:return random.randrange(self.action_size)else:state = torch.from_numpy(state).float().unsqueeze(0)q_values = self.model(state)return np.argmax(q_values.detach().numpy())def train(self):if len(self.memory.buffer) < self.batch_size:returnstates, actions, rewards, next_states, dones = self.memory.sample(self.batch_size)states = torch.from_numpy(np.array(states)).float()actions = torch.from_numpy(np.array(actions)).long()rewards = torch.from_numpy(np.array(rewards)).float()next_states = torch.from_numpy(np.array(next_states)).float()dones = torch.from_numpy(np.array(dones)).float()q_values = self.model(states).gather(1, actions.unsqueeze(1)).squeeze(1)next_q_values = self.target_model(next_states).max(1)[0].detach()expected_q_values = rewards + self.gamma * next_q_values * (1 - dones)loss = nn.functional.smooth_l1_loss(q_values, expected_q_values)self.optimizer.zero_grad()loss.backward()self.optimizer.step()for param, target_param in zip(self.model.parameters(), self.target_model.parameters()):target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)if self.epsilon > self.epsilon_min:self.epsilon *= self.epsilon_decay
最后,我们定义一个主函数,它将训练我们的
DQN模型并输出结果。
def main():state_size = 64action_size = 2buffer_size =batch_size = 32gamma = 0.99epsilon = 1.0epsilon_decay = 0.995num_episodes = 1000agent = Agent(state_size, action_size, buffer_size, batch_size, gamma, epsilon, epsilon_decay)# 训练循环for episode in range(num_episodes):# 初始化环境state = env.reset()# 记录总奖励total_reward = 0# 训练循环while True:# 选择动作action = agent.select_action(state)# 执行动作并观察结果next_state, reward, done, _ = env.step(action)# 将经验添加到回放缓冲区agent.memory.add(state, action, reward, next_state, done)# 训练DQNagent.train()# 更新状态state = next_state# 更新总奖励total_reward += reward# 如果游戏结束了,退出循环if done:break# 输出训练结果print("Episode: {}/{}, Total Reward: {}, Epsilon: {:.2f}".format(episode+1, num_episodes, total_reward, agent.epsilon))if __name__ == "__main__":main()
请注意,上面的
代码仅用作示例。你需要根据你的数据集和模型进行适当的修改。
版权声明:
本文来源网络,所有图片文章版权属于原作者,如有侵权,联系删除。
本文网址:https://www.mushiming.com/mjsbk/3310.html