在深度学习中,
卷积神经
网络(Convolutional Neural Network, CNN)是最常用和最流行的
网络结构之一。然而,CNN 有一个缺点,即每一层只能提取特定大小的特征。这可能导致信息丢失和性能下降。为了解决这个问题,动态
卷积被引入了 CNN 中。与传统的
卷积相比,动态
卷积可以自适应地学习特征的大小和形状。
DenseNet-Inception 模型是一种结合了
DenseNet和 Inception 的
网络结构,其中
DenseNet使用
密集连接来提高特征的重用,Inception 利用不同大小的
卷积核来提取不同大小的特征。在这个模型中,动态
卷积被引入到了 Inception 模块中,以提高模型的性能。
以下是
DenseNet-Inception 模型
代码 实现:
import torchimport torch.nn as nnimport torch.nn.functional as FclassDenseNetInception(nn.Module):def __init__(self, num_classes=10):super(DenseNetInception, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# Inception module with dynamic convolutionself.inception1 = InceptionModule(64, 64, 96, 128, 16, 32, 32)self.inception2 = InceptionModule(256, 128, 128, 192, 32, 96, 64)self.inception3 = InceptionModule(480, 192, 96, 208, 16, 48, 64)self.inception4 = InceptionModule(512, 160, 112, 224, 24, 64, 64)self.inception5 = InceptionModule(512, 128, 128, 256, 24, 64, 64)self.inception6 = InceptionModule(512, 112, 144, 288, 32, 64, 64)self.inception7 = InceptionModule(528, 256, 160, 320, 32, 128, 128)self.inception8 = InceptionModule(832, 256, 160, 320, 32, 128, 128)self.inception9 = InceptionModule(832, 384, 192, 384, 48, 128, 128)#DenseNetmoduleself.dense_block1 = DenseBlock(832, 32)self.trans_block1 = TransitionBlock(1024, 0.5)self.dense_block2 = DenseBlock(512, 32)self.trans_block2 = TransitionBlock(768, 0.5)self.dense_block3 = DenseBlock(384, 32)self.trans_block3 = TransitionBlock(576, 0.5)self.dense_block4 = DenseBlock(288, 32)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(288, num_classes)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.inception1(x)x = self.inception2(x)x = self.inception3(x)x = self.inception4(x)x = self.inception5(x)x = self.inception6(x)x = self.inception7(x)x = self.inception8(x)x = self.inception9(x)x = self.dense_block1(x)x = self.trans_block1(x)x = self.dense_block2(x)x = self.trans_block2(x)x = self.dense_block3(x)x = self.trans_block3(x)x = self.dense_block4(x)x = self.avgpool(x)x = x.view(x.size(0), -1)x = self.fc(x)return xclass InceptionModule(nn.Module):def __init__(self, in_channels, out1, out2_1, out2_2, out3_1, out3_2, out4_2):super(InceptionModule, self).__init__()self.branch1 = nn.Sequential(nn.Conv2d(in_channels, out1, kernel_size=1),nn.BatchNorm2d(out1),nn.ReLU(inplace=True))self.branch2 = nn.Sequential(nn.Conv2d(in_channels, out2_1, kernel_size=1),nn.BatchNorm2d(out2_1),nn.ReLU(inplace=True),DynamicConv2d(out2_1, out2_2, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(out2_2),nn.ReLU(inplace=True))self.branch3 = nn.Sequential(nn.Conv2d(in_channels, out3_1, kernel_size=1),nn.BatchNorm2d(out3_1),nn.ReLU(inplace=True),DynamicConv2d(out3_1, out3_2, kernel_size=5, stride=1, padding=2, bias=False),nn.BatchNorm2d(out3_2),nn.ReLU(inplace=True))self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels, out4_2, kernel_size=1),nn.BatchNorm2d(out4_2),nn.ReLU(inplace=True))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)class DenseBlock(nn.Module):def __init__(self, in_channels, growth_rate):super(DenseBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, 4 * growth_rate, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(4 * growth_rate)self.relu = nn.ReLU(inplace=True)self.conv2 = DynamicConv2d(4 * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(growth_rate)def forward(self, x):out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = torch.cat([x, out], 1)return outclass TransitionBlock(nn.Module):def __init__(self, in_channels, reduction):super(TransitionBlock, self).__init__()self.conv = nn.Conv2d(in_channels, int(in_channels * reduction), kernel_size=1, bias=False)self.bn = nn.BatchNorm2d(int(in_channels * reduction))self.relu = nn.ReLU(inplace=True)self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2)def forward(self, x):out = self.conv(x)out = self.bn(out)out = self.relu(out)out = self.avgpool(out)return outclass DynamicConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):super(DynamicConv2d, self).__init__()self.kernel_size = kernel_sizeself.stride = strideself.padding = paddingself.dilation = dilationself.groups = groupsself.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size))if bias:self.bias = nn.Parameter(torch.Tensor(out_channels))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self):nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))if self.bias is not None:fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)bound = 1 / math.sqrt(fan_in)nn.init.uniform_(self.bias, -bound, bound)def forward(self, x):weight = F.pad(self.weight, (self.padding, self.padding, self.padding, self.padding))weight = weight[:, :, :x.shape[-2] + self.padding * 2, :x.shape[-1] + self.padding * 2]out = F.conv2d(x, weight, self.bias, self.stride, 0, self.dilation, self.groups)return out
在这个
代码中,我们定义了一个
DenseNet-Inception 模型,并
实现了动态
卷积。在模型中,我们首先定义了一个标准的
卷积层,然后定义了 Inception 模块和
DenseNet模块。在 Inception 模块中,我们引入了动态
卷积,以提高模型的性能。在
DenseNet中,我们使用了
密集连接来提高特征的重用。最后,我们定义了一个全连接层来分类。
如果您想使用这个模型来训练数据,请确保您已经定义了数据集,并使用合适的优化器和损失函数。
版权声明:
本文来源网络,所有图片文章版权属于原作者,如有侵权,联系删除。
本文网址:https://www.mushiming.com/mjsbk/917.html