RAN SAC(
RANdom SAmple Consensus)是一种经典的模型拟合
算法,用于从一组杂乱的数据中找出最佳的模型。它的基本思想是随机选取一定数量的数据点,使用这些数据点来拟合模型,然后将所有数据点带入模型中,统计符合模型的数据点数量,如果符合数量超过阈值,则认为这些数据点符合这个模型,即它们是局内点(inlier)。重复以上过程,多次迭代之后,找到的最佳模型是拟合最优的模型,符合该模型的数据点就是局内点。
RAN SAC 算法通常用于处理含有噪声或者异常数据的拟合问题,例如点云配准、图像匹配等问题。
版权声明:
本文来源网络,所有图片文章版权属于原作者,如有侵权,联系删除。
本文网址:https://www.mushiming.com/mjsbk/6211.html