好的,以下是一个基于
Python实现的基于
MCTS和UCT的五子棋游戏AI的代码示例:
pythonimport randomimport mathclass TreeNode:def __init__(self, state, parent=None):self.state = stateself.parent = parentself.children = []self.visits = 0self.score = 0def UCT(node):C = 1.4if node.visits == 0:return float('inf')return (node.score / node.visits) + C * math.sqrt(math.log(node.parent.visits) / node.visits)defMCTS(state, iterations):root = TreeNode(state)for i in range(iterations):node = root# selectionwhile node.children:node = max(node.children, key=UCT)# expansionif node.visits > 0:moves = node.state.get_moves()for move in moves:if move not in [c.state.last_move for c in node.children]:child_state = node.state.apply_move(move)child_node = TreeNode(child_state, node)node.children.append(child_node)# simulationsim_node = nodewhile sim_node.children:sim_node = random.choice(sim_node.children)score = simulate(sim_node.state)# backpropagationwhile node:node.visits += 1node.score += scorenode = node.parentreturn max(root.children, key=lambda c: c.visits).state.last_movedef simulate(state):player = state.get_current_player()while not state.is_terminal():move = random.choice(state.get_moves())state = state.apply_move(move)player = state.get_current_player()if state.get_winner() == player:return 1elif state.get_winner() == None:return 0.5else:return 0class Board:def __init__(self, width=15, height=15, win_length=5):self.width = widthself.height = heightself.win_length = win_lengthself.board = [[None for y in range(height)] for x in range(width)]self.last_move = Nonedef get_moves(self):moves = []for x in range(self.width):for y in range(self.height):if self.board[x][y] == None:moves.append((x, y))return movesdef apply_move(self, move):x, y = moveplayer = self.get_current_player()new_board = Board(self.width, self.height, self.win_length)new_board.board = [row[:] for row in self.board]new_board.board[x][y] = playernew_board.last_move = movereturn new_boarddef get_current_player(self):if sum(row.count(None) for row in self.board) % 2 == 0:return "X"else:return "O"def is_terminal(self):if self.get_winner() != None:return Truefor x in range(self.width):for y in range(self.height):if self.board[x][y] == None:return Falsereturn Truedef get_winner(self):for x in range(self.width):for y in range(self.height):if self.board[x][y] == None:continueif x + self.win_length <= self.width:if all(self.board[x+i][y] == self.board[x][y] for i in range(self.win_length)):return self.board[x][y]if y + self.win_length <= self.height:if all(self.board[x][y+i] == self.board[x][y] for i in range(self.win_length)):return self.board[x][y]if x + self.win_length <= self.width and y + self.win_length <= self.height:if all(self.board[x+i][y+i] == self.board[x][y] for i in range(self.win_length)):return self.board[x][y]if x + self.win_length <= self.width and y - self.win_length >= -1:if all(self.board[x+i][y-i] == self.board[x][y] for i in range(self.win_length)):return self.board[x][y]return Nonedef __str__(self):return "".join(" ".join(self.board[x][y] or "-" for x in range(self.width)) for y in range(self.height))if __name__ == "__main__":board = Board()while not board.is_terminal():if board.get_current_player() == "X":x, y = map(int, input("Enter move (x y): ").split())board = board.apply_move((x, y))else:move =MCTS(board, 1000)print("AI move:", move)board = board.apply_move(move)print(board)print("Winner:", board.get_winner())
该代码定义了一个 `TreeNode` 类来保存节点的状态和统计信息,实现了基于UCB公式的UCT算法和基于
MCTS和UCT的五子棋AI。同时,代码还定义了一个 `Board` 类来表示五子棋游戏的状态和规则,并实现了判断胜负、获取可行落子位置等方法。在 `__main__` 函数中,代码通过交替输入玩家落子位置和调用AI选择落子位置的方式,实现了人机对战的功能。
希望这个代码对你有所帮助!
版权声明:
本文来源网络,所有图片文章版权属于原作者,如有侵权,联系删除。
本文网址:https://www.mushiming.com/mjsbk/13272.html