回答1:
rrt*-connect是一种路径规划
算法,用于在给定的环境中找到两个已知点之间的最优路径。下面是一个基于
Python语言
实现的简单示例
代码:
pythonimport numpy as npimport matplotlib.pyplot as plt# 初始化rrt*-connect算法的节点类class Node:def __init__(self, x, y):self.x = xself.y = yself.parent = None# 计算两个节点之间的距离def distance(node1, node2):return np.sqrt((node1.x - node2.x)2 + (node1.y - node2.y)2)# 检查两个节点之间是否存在障碍物def check_obstacle(node1, node2, obstacle_list):for obstacle in obstacle_list:distance_to_obstacle = np.sqrt((obstacle[0] - node1.x)2 + (obstacle[1] - node1.y)2)if distance_to_obstacle <= 1.0:return Truereturn False# 使用rrt*-connect算法搜索路径defrrt_connect(start, goal, obstacle_list):nodes_start = [start]nodes_goal = [goal]while True:# 从起点开始扩展树random_node = Node(np.random.uniform(0, 10), np.random.uniform(0, 10))nearest_node = nodes_start[0]for node in nodes_start:if distance(node, random_node) < distance(nearest_node, random_node):nearest_node = nodeif check_obstacle(nearest_node, random_node, obstacle_list):continuenew_node = Node(random_node.x, random_node.y)new_node.parent = nearest_nodenodes_start.append(new_node)# 从终点开始扩展树random_node = Node(np.random.uniform(0, 10), np.random.uniform(0, 10))nearest_node = nodes_goal[0]for node in nodes_goal:if distance(node, random_node) < distance(nearest_node, random_node):nearest_node = nodeif check_obstacle(nearest_node, random_node, obstacle_list):continuenew_node = Node(random_node.x, random_node.y)new_node.parent = nearest_nodenodes_goal.append(new_node)# 检查两颗树是否连接for node1 in nodes_start:for node2 in nodes_goal:if distance(node1, node2) <= 1.0 and not check_obstacle(node1, node2, obstacle_list):return nodes_start, nodes_goalreturn None, None# 测试代码start_node = Node(1, 1)goal_node = Node(9, 9)obstacles = [(5, 5), (6, 6), (7, 7)]path_start, path_goal =rrt_connect(start_node, goal_node, obstacles)if path_start is not None and path_goal is not None:path_start.append(path_goal[-1])path = []current_node = path_start[-1]while current_node is not None:path.append((current_node.x, current_node.y))current_node = current_node.parentpath.reverse()print("找到路径:", path)else:print("未找到路径")
这段
代码 实现了一个简单的
rrt*-connect
算法,用于寻找起点和终点之间的最优路径。其中通过定义Node类表示路径上的节点,distance函数计算两个节点间的距离,check_obstacle函数用于检查两个节点间是否存在障碍物。主函数
rrt_connect则是使用
rrt*-connect
算法进行路径搜索,并返回两个树的根节点列表。
最后进行测试,通过
rrt_connect函数得到的路径点列表,再逆向遍历节点的parent指针,获取完整的路径。如果找到路径,则将其打印输出,否则输出未找到路径的信息。
回答2:
rrt*-connect
算法是一种针对路径规划问题的改进型Rapidly-Exploring Random Tree (
RRT)
算法。以下是一个简单的
rrt*-connect的
Python 代码示例:
pythonimport numpy as npimport matplotlib.pyplot as pltclass Node:def __init__(self, x, y):self.x = xself.y = yself.parent = Nonedef distance(node1, node2):return np.sqrt((node1.x - node2.x)2 + (node1.y - node2.y)2)def generate_random_node(x_range, y_range):x = np.random.uniform(x_range[0], x_range[1])y = np.random.uniform(y_range[0], y_range[1])return Node(x, y)def find_nearest_node(node_list, random_node):distances = [distance(node, random_node) for node in node_list]nearest_index = np.argmin(distances)return node_list[nearest_index]def is_collision_free(node1, node2, obstacles):# 检查路径上是否有碰撞# 如果有碰撞,返回False;否则返回True# 这里省略碰撞检测的具体实现 代码return not collision_detecteddefrrt_connect(start, goal, x_range, y_range, obstacles):nodes = [start]while True:random_node = generate_random_node(x_range, y_range)nearest_node = find_nearest_node(nodes, random_node)new_node = Node(nearest_node.x + 0.1 * (random_node.x - nearest_node.x),nearest_node.y + 0.1 * (random_node.y - nearest_node.y))if is_collision_free(nearest_node, new_node, obstacles):nodes.append(new_node)if distance(new_node, goal) < 0.1:return True, nodesif len(nodes) % 2 == 0:nodes = nodes[::-1]start = Node(1, 1)goal = Node(5, 5)x_range = [0, 10]y_range = [0, 10]obstacles = [[3, 3], [4, 4]] # 障碍物的位置success, path =rrt_connect(start, goal, x_range, y_range, obstacles)if success:x = [node.x for node in path]y = [node.y for node in path]plt.plot(x, y, '-r')plt.xlim(x_range)plt.ylim(y_range)plt.show()
这段
代码描述了
rrt*-connect的主要逻辑。它通过生成随机节点,寻找最近邻节点,并尝试从最近邻节点朝随机节点延伸,然后检查路径是否与障碍物相碰撞。如果延伸的路径安全,则将新节点添加到节点列表中。最终,如果找到一条从起始节点到目标节点的路径,则返回路径节点列表。如果找不到路径,则返回False。
代码还包含了绘制路径的部分,以便可视化显示结果。请注意,
代码中的碰撞检测部分需要根据具体的碰撞检测
算法进行
实现。
回答3:
rrt*-connect是一种改进版的快速随机树(Rapidly-exploring Random Trees,
RRT)
算法,用于路径规划。下面是一个使用
Python编写的简要
实现 代码:
pythonimport numpy as npimport matplotlib.pyplot as pltclass Node:def __init__(self, x, y):self.x = xself.y = yself.parent = Nonedef dist(self, other):return np.sqrt((self.x - other.x)2 + (self.y - other.y)2)classRRTConnect:def __init__(self, start, goal, obstacles, step_size=0.5, max_iters=1000):self.start = Node(*start)self.goal = Node(*goal)self.obstacles = obstaclesself.step_size = step_sizeself.max_iters = max_itersdef generate_random_point(self):x = np.random.uniform(0, 10) # 计划空间的x范围y = np.random.uniform(0, 10) # 计划空间的y范围return Node(x, y)def find_nearest_node(self, tree, point):distances = [node.dist(point) for node in tree]return tree[np.argmin(distances)]def generate_new_node(self, nearest_node, random_node):distance = nearest_node.dist(random_node)if distance <= self.step_size:return random_nodeelse:scale = self.step_size / distancex = nearest_node.x + (random_node.x - nearest_node.x) * scaley = nearest_node.y + (random_node.y - nearest_node.y) * scalereturn Node(x, y)def is_collision_free(self, node1, node2):for obstacle in self.obstacles:if obstacle[0] < node1.x < obstacle[1] and obstacle[2] < node1.y < obstacle[3]:return Falseif obstacle[0] < node2.x < obstacle[1] and obstacle[2] < node2.y < obstacle[3]:return Falsereturn Truedefrrt_connect(self):tree1 = [self.start]tree2 = [self.goal]for _ in range(self.max_iters):random_node = self.generate_random_point()nearest_node1 = self.find_nearest_node(tree1, random_node)nearest_node2 = self.find_nearest_node(tree2, random_node)new_node1 = self.generate_new_node(nearest_node1, random_node)new_node2 = self.generate_new_node(nearest_node2, random_node)if self.is_collision_free(nearest_node1, new_node1):tree1.append(new_node1)if self.is_collision_free(nearest_node2, new_node1):path = self.connect_trees(tree1, tree2, nearest_node1, new_node2)if path:return pathif self.is_collision_free(nearest_node2, new_node2):tree2.append(new_node2)if self.is_collision_free(nearest_node1, new_node2):path = self.connect_trees(tree1, tree2, nearest_node1, new_node2)if path:return pathreturn Nonedef connect_trees(self, tree1, tree2, node1, node2):path = []while node1.parent:path.append([node1.x, node1.y])node1 = node1.parentpath.append([self.start.x, self.start.y])path = path[::-1]while node2.parent:path.append([node2.x, node2.y])node2 = node2.parentpath.append([self.goal.x, self.goal.y])return path# Usage example:start = [1, 1] # 起点goal = [9, 9] # 终点obstacles = [[3, 4, 2, 5], [7, 9, 6, 8]] # 障碍物坐标范围,例如[x1, x2, y1, y2]rrt=RRTConnect(start, goal, obstacles)path =rrt.rrt_connect()print("路径点坐标:", path)# 绘制路径if path:path = np.array(path)plt.plot(path[:,0], path[:,1], '-o')for obstacle in obstacles:plt.fill([obstacle[0], obstacle[0], obstacle[1], obstacle[1]],[obstacle[2], obstacle[3], obstacle[3], obstacle[2]],'r')plt.xlim(0, 10)plt.ylim(0, 10)plt.show()
以上是一个简单的
RRT*-connect
算法的
Python 实现。
代码 实现了通过随机扩展树的方式来寻找起点到终点的路径,并考虑了障碍物的碰撞检测。
版权声明:
本文来源网络,所有图片文章版权属于原作者,如有侵权,联系删除。
本文网址:https://www.mushiming.com/mjsbk/10348.html